
“Can you say that again? We’re hav-
ing trouble holding our sugar cubes.”

“I’m telling you, we can’t see Mars: it
never gets dark here!”

“Wait, doesn’t that lead to the
inevitability of entropy?”

“Ah, that is the significance of the cal-
culus!”

These are youth speaking, but the
conversations are not taking place in
university halls, or in the philosophy
chatroom of an internet website. These
are the voices of collaboration among
the international offices of LaRouche’s
“Combat University on Wheels.”

Over the past year, the self-conception
and political actions of the LaRouche
Youth Movement internationally have
transformed from movements in particu-
lar regions or countries, into an interna-
tional force dedicated to LaRouche’s
election in 2004, and to banishing Euler
and Lagrange from classrooms world-
wide.

We started our international inter-
change of ideas around a
year ago, intending to get a
more sensuous conception
of the global nature of our
political fight and to col-
laborate on organizing
projects. This had a true
effect in producing a sense of our inter-
national mission, particularly in some of
the more isolated offices. Beginning with
the crucial role of American members of
the LaRouche Youth Movement around
the March 2003 European conference in
Bad Schwalbach, Germany, this collabo-
ration has moved forward on the scien-
tific and pedagogical front, and over the
past half-year the European offices of the
International LaRouche Youth Movement
have exploded in recruitment and poten-
tial. Over a period of just a few months
the following remarkable developments

have taken place: Sweden grew from
zero to eight full-time youth members;
Denmark now has half-a-dozen youth
organizers; in France, more than a
dozen, from a larger group of full-time

youth, are spreading La-
Rouche’s ideas on a six-
week long summer Tour de
France; a dozen young Ger-
mans are dedicated to the
hegemony of LaRouche’s
method; and, a youth

movement is taking off in Italy. A meas-
ure of their success so far was the atten-
dance of more than 120 serious youth
from across Europe at the August 16-17
conference in Frankfurt, Germany, where
about a dozen science pedagogies by the
youth were among the presentations.

So what does scientific epistemology
have to do with this recruitment?
Illustrative is one discussion, in which
this author participated, sparked by an
evening’s work on mathematics and
geometry in Rennes, France, last April.
Taking our cue from LaRouche, we were

examining square and cube numbers in
the context of working on the concept of
powers as a crucial element for under-
standing Gauss’s 1799 “Fundamental
Theorem of Algebra” report. Our path to
the discoveries we made that day,
demonstrated that you can only know by
personally re-working a discovery; no
amount of description will do. On this
particular question, we began by first
examining square numbers as simply
numbers multiplied by themselves, and
cube numbers as another multiplication.
We came up with these numerical
results:

Square numbers:

Number 1 4 9 16 25 36

diff. 3 5 7 9 11

2nd diff. 2 2 2 2

Cube numbers:

Number 1 8 27 64 125 216

diff. 7 19 37 61 91

2nd diff. 12 18 24 30

3rd diff. 6 6 6
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French members of
the LaRouche Youth
Movement produce
the minimal surface
known as the
catenoid by forming
a soap film between
two parallel rings, at
the Wiesbaden,
Germany,
pedagogical festival
May 31, 2003.
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From this we came to the
provocative, but incom-
plete conclusion that the
difference between square
numbers differs by 2, and
the difference of the differ-
ence between the cube
numbers differs by 6. This
descriptive approach from a
textbook number-line,
Euler-LaGrange standpoint
led us to numerical conclu-
sions. But what do these
numerical values actually
mean? Approaching geom-
etry with equations is like
designing a car on a com-
puter—you do not know what is really
happening.

Next, the Whiteboard
Time to look at the geometry

involved! So, we pulled out a white-
board and began to look at actual
squares. When we draw the sequence of
the square numbers, such that each
square number has the previous square
number hatched out of it, this leaves us
with the difference between the num-
bers (Figure 1).

We saw that the differences were 1, 3,
5, 7, and so on, giving a difference of
differences of 2. But where does this 2
exist physically? Let’s do the same thing
again, this time looking only at the dif-
ferences, and hatching out the previous
difference (Figure 2). This leaves us each
time with the two opposite corner
squares remaining—aha, here is our 2!

So far, so good, for the squares. But
what about explaining our cube num-
bers? Stuck with a flat whiteboard, one
might just give up after making a few
messy drawings of cubes, saying, “well,

the numbers just
work out to give us
that 6.” Fortunately,
we were armed with
wooden cubes.

Cubes
With our supply of

small wooden cubes
in hand, we re-ex-
amined the problem.
First, we made square
numbers again, dis-
covering that instead
of looking at the
sequence of num-
bers as given, we
had to actually determine the numbers
of blocks that form squares. Taking one
square’s worth of blocks out of the next
larger square left us with the L-shapes
we found earlier on the whiteboard. Try
it yourself. No, really, get some sugar
cubes or play blocks and do it right now
(we’ll wait); you will discover things that
you would not by trying to imagine in
your head.

Next, we investigated cubes, first
making a sequence of cube numbers out
of our blocks. When it came to finding
the differences between the cube num-
bers, we removed the smaller cube from
the larger, not as a number of blocks, but
as an actual cube, so that we could see
the process of growth among the cubes.
We were left with a series of cube-shells
(Figure 3), which we saw were growing
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Figure 1 
A SEQUENCE OF SQUARE NUMBERS

The square numbers 1, 4, 9, 16. The area of the
previous square is indicated by shading, leaving the
square excess in white.

Figure 2 
THE SQUARE EXCESSES

The excess, or first-order difference between the square
numbers 1, 3, 5, and 7 is shown; the area of the
previous excess is indicated by shading, leaving the
constant second order difference of 2.
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The author 
(checked shirt) in
discussion with
Lyndon LaRouche,
after a conference in
Reston, Virginia, 
Feb. 17, 2003, and
presenting the
Archytas solution to
the doubling of the
the cube at a
pedagogical evening
in Wiesbaden,
Germany, April 2003.
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similarly. But where was the growth?
Another layer of discovery was neces-
sary.

With the cube numbers you have
built, try to find the shape of the change
from one cube-shell to the next, with-
out looking at the figure. You may need
the help of a friend for this one, and
you certainly cannot do it without
physically building cubes, so get some
if you have not yet done so. What you
find is the interesting frame shape
shown taped together here (Figure 4).
Here is our six!—a six-sided frame that
increases by six between each set of
cube numbers, as we see illustrated,
and broken down into its six compo-
nents in Figure 5.

Now we had a clear idea of the actu-
al process of growth occurring in the
cubes, as a physical generative process,
instead of an after-the-fact description.
We also recognized, in the distinction
between the two approaches to the
problem, a clear demonstration of the
essential fraud behind the New
Economy: the same principle which lies
behind the widespread substitution of
computer-modelling for field testing,
such as happened with the disastrous
Mercedes A-Class design of a few years
ago. The error lies in assuming that you
actually “know” something, because
you can write a formula, or make some
other abstract description that appears to
match a process.

Knowing some-
thing is not a
matter of saying
in your head that
you “see” it; you
must understand
how to generate

it. If you are trying to understand this,
without pulling out some cubes and
doing the actual work, your mentality is
no different than those greedy Enron day
traders, trying to make money with noth-
ing to back it up, or those still stubbornly,
foolishly imagining there is some way to
make it without getting LaRouche elected:

“I see food in the supermarket every
day; what do you mean we are facing an
economic crisis?”

“Oh, we must be in a recovery by now.
The economy goes in cycles.” —Why?
“Well, it just works that way.”

“Yeah, sure Saddam had WMDs. How
dare you suggest a need to know any-

thing about the infrastructure and indus-
trial prerequisites for a weapons pro-
gram before making that assertion. It’s
just true! You don’t want to wait till you
see a mushroom cloud, do you?”

“Yeah, put the suture there, that’s
what medicine.com said.”

If you do not know the process that
generates the objects we encounter in
our sensed universe, you do not really
know anything about them. You cannot

see an economy; you must know how to
generate it.

Science in the 
LaRouche Youth Movement

So, what do we do with a discovery?
Well, tell everyone else, of course! Our
international movement has been inten-
sifying its work on epistemology and
pedagogical method, and we have been
having discussions on Nicholas of Cusa,
the father of modern science, powers

10 Fall 2003 21st CENTURY SCIENCE AND THE YOUTH MOVEMENT

Figure 3 
THE CUBIC EXCESSES

The sequence of cubic numbers 1, 8, 27, 64 is pictured., with the volume of
the previous cube removed from each.

Figure 4 
THE SIX-SIDED CUBIC ‘FRAME’

The cubic frames illustrate what is left after the difference of the difference is
subtracted from the sequence of cubic numbers.
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and means, the curvature of the uni-
verse, what soap bubbles have to do
with entropy, differentials from the
standpoint of Pascal, Gauss’s 1799
report on the “Fundamental Theorem of
Algebra,” Riemannian space, Abelian
functions, the Pythagorean comma and
the paradox of communicating ideas
and talking with the universe, observa-
tions of our neighbor Mars, and the
Carnot-Monge brigade system to rapidly
expand the power of reason. These dis-
cussions have been used to give to youth
new to our movement a sense of our
international mission and the power of
ideas to shape history. How else but
through the power of the human mind
will we reverse decades of a consumer
outlook to products and ideas, and cre-
ate a Renaissance dedicated to reviving
the method of discovery?

Power
How will we, as a  movement without

overwhelming force of numbers, remove
Vice President Cheney, and implement
LaRouche’s economic policy before
LaRouche’s election in 2004? It is not
going to come through what we are told
are the normal avenues of power.
Having lots of money, a knack for graffi-

ti, university degrees, gold teeth, mutant
powers, a great ass, a basement full of
canned food, or a team of highly trained
secret agents are not going to improve
the power of mankind in and over the
universe.

What actually transforms human
power is not more of anything—more
money, more guns, or even more eco-
nomic infrastructure per se. It is that
flanking ability of a human mind to

change, through a new discovery of
principle, the domain of what is genera-
tively possible. Instead of thinking “I am
doing everything I can,” think “how do I
change what I am capable of?”

Plato addressed this political concept
in his Meno dialogue, which will lead us
into the Platonic conception of power.
The part of the dialogue that we will dis-
cuss begins with a discussion Socrates is
holding with Meno about the nature of
knowledge. This question is of funda-
mental importance in determining the
orbit of human culture: What defines
humanity, as distinct from animals,
besides our ability to know?

Socrates demonstrates the ability to
know as inherent in every human being,
through a discussion with an uneducat-
ed slave boy. Socrates takes up this
question of knowing in a domain that,
today, is considered by many to be
opaque to general understanding: geom-
etry. Drawing a square in the sand,
Socrates asks this boy to double it—to
make a square twice as big.

The boy’s first idea is to double the
length of each side of the square. A good
first try, but wait, that gives a square four
times as large as the original (Figure 6).
The boy’s next guess is to make each
side one-and-a-half times as long, which
gives us a shape (Figure 7) that includes
the original square, two rectangles each
half the area of the square (which brings
us up to double the area already), and a
smaller square as well—too big again.

Now, think about how we could cut the
square of area four (Figure 6) in half. Well,
we see that we can split a square to make
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Figure 5 
EXPLODED VIEW OF THE SIX-SIDED CUBIC FRAME

Here one can see how each cubic “frame” is made up of six sides. Each side
increases by 1 from one cubic number to the next, giving 6 as the third-order
difference of the cubic numbers.

Figure 6 
FIRST ATTEMPT TO DOUBLE

THE SQUARE
Doubling each side of a square
produces a square that is four
times the original area.

Figure 7 
SECOND ATTEMPT TO DOUBLE

THE SQUARE
Increasing each side by one-half,
produces a square that is more
than twice as large.



two equal triangles, and if we do that for
each of the four squares, we can make a
new, “crooked” square (Figure 8). This
crooked square contains half
the area of the large, quadru-
pled square, making it twice
as big as the original square.
Ah! The boy knows that this is
a successful doubling. By
awakening this discovery in
the mind of the slave, Socrates
shows that the ability to know
can be evoked in anyone, and
that it can be demonstrated.

Finding the 
Square Root of 2

We have not fully under-
stood everything about this
doubled square, however.
In his Theaetetus dialogue,
Plato demonstrates that the
side of this doubled square
is very interesting indeed.
Let’s examine this length,
not as crooked, but by
bringing it down to lie on
the straight line of the base
of our original square
(Figure 9).

So how long is this length?
“The square root of 2,” we
hear. Hold on just a minute!
That is a question, not an
answer. We know that this
length is the square root of
2, because we found it to be
the root (foundation) for
building a square of 2. But
how long is it? “1.41421. . .
something,” is our next,

more precise-sounding answer. That may
be a close approximation to measure its
length, but how long is it really?

We know we are looking for a num-
ber greater than one and less than 3/2. If
we can find it exactly, we will have the
side of the square whose area is 2, that
is, the square root of 2. Do we have the
means to create this length without
drawing a diagonal? Let’s try it out.
Perhaps we can find a fraction (a ratio
of two whole numbers) that will give us
the desired value. There are an infinite
number of fractions between 1 and 2 to
choose from, so one of them must be it.
Let us see if we can construct it.

First, to get a general idea of what it
means to make a square with a given
magnitude for a side, take the example
of a square whose side is 1-2⁄5 (or 7/5) in
length. To do this, we imagine that we
take our original square, cut each side

into five equal segments, and add two
more of these segments on each side to
make our new square (Figure 10). This is
how any length increase operates. Now,
think of our fractional length as making
a ratio in size between two squares. In
the case of Figure 10, we have a ratio of
an original square with 25 blocks, and a
larger one of 49—pretty close to double,
but not quite right on. To solve our prob-
lem of finding the length needed to dou-
ble the square (the square root of 2)
means figuring out how to construct a
ratio between two squares that makes
one square precisely twice as large as
another.

We can narrow down the fraction we
are looking for by trying to figure out if
our sought-after original and doubled
squares have sides of odd or of even
length in regard to each other. If we
begin by posing that the larger square is

odd on its side, then we
arrive at a square that con-
tains an odd number of
blocks. (Figure out on your
own, with blocks, coins,
sugar cubes, and so on, why
an odd-number square is
odd.) But an odd number
cannot be double anything,
for then it would be even.
This is impossible. So, our
larger square must have
even sides.

Now that we know that
our larger square is even on
each side, we now have to
figure out the evenness or
oddness of our smaller
square. If it is also even on
each side (for example 8/6,
as in Figure 11), then we did
not need to cut up the
squares into so many pieces
to make our ratio. In this
example, we could look at
the ratio as 4/3, just as 3/2
could have been called 6/4,
while still being the same
ratio. So if both squares are
even, then we could reduce
the number of divisions
such that one or the other
will be odd. We already dis-
cussed the large square
being odd, so now we are
left with the large square
being even and the smaller
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Tarrajna Dorsey, joined by other exuberant members of the
LaRouche Youth Movement, uses cubic blocks to investigate
the principle of powers at a Seattle pedagogical event
August 2, 2003.

Figure 8 
THE DOUBLED SQUARE

By cutting each of the four squares
of Figure 6 in half on the dia-
gonal, a new square is produced
(dotted lines) which has area of 2.



odd—we are narrowing in on our
sought-for fraction!

If we look at an even-sided large
square and an odd-sided small square,
with the large square twice the small
square, then we can say that, cutting the
large square in half (Figure 12), each half
should have the odd area of the small,
odd square. But the long side of these
two rectangles is even, making the rec-
tangles even, not odd. This cannot work
either. Aha, but that is all the possibili-
ties. If the length we are looking for can
be expressed as a fraction or ratio of two

whole numbers, they must each be either
odd or even. But we are out of options!

We appear to have found something
that lies beyond the infinite: all those
fractions (an infinite number of them),
and not one of them makes the magni-
tude we are looking for? This so-called

“square root of 2,” appears as a “hole” in
our number line, a discontinuity in what
we before thought to be completely con-
tinuous. Now you know what the synar-
chists are confronted with in LaRouche!

This magnitude we have found is a
higher power, in Plato’s sense of power.
We are able, in space, to create magni-
tudes that cannot be expressed on the
number line. This higher idea of power
expands the
domain of possi-
ble actions, in the
same way that
the incorporation
of a newly dis-
covered universal
principle into our economy transforms
the cardinality of potential effects we
can generate. Just as our power over the
universe is increased by the discovery
and implementation of truthful universal
principles, any individual’s potential his-
toric potency is determined by discovery
and passionate adherence to truthful
social principles.

Looking at the world we find our-
selves in, how can you increase the abil-
ity of mankind to survive this crisis? Will
you pretend you do not know what to
do, or will you act with LaRouche? Time
to join the International LaRouche
Youth Movement!
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Figure 9 
DETERMINING THE ‘SQUARE ROOT OF 2’

We compare the length of the side of the doubled square (diagonal) to the
side of the original square, by carrying its length down onto the extension of
one of the sides.

Figure 11
CAN THE SQUARE ROOT OF 2

BE A RATIO OF EVEN
NUMBERS?

Suppose the even numbers are in
the ratio 8/6. The small and large
boxes in the diagram show us
that the square of 8/6 (a ratio of
even numbers) is equivalent to
the square of 4/3 (a ratio of even
over odd). Any even-number
ratio will be reducible to a ratio
containing either two odd
numbers, or an odd and even
number.

Figure 10 
CAN THE SQUARE ROOT OF 2

BE A RATIO OF ODD
NUMBERS?

Here the area of a square whose
side is 7/5 is considered. Its area
of 49/25 is close to, but not equal
to 2. No odd square can be twice
anything.

Figure 12
THE SQUARE ROOT OF 
AN EVEN-ODD RATIO

DOESN’T WORK EITHER
Here, we take the large square
and cut it in half, each half
having the odd area of the small
odd square. But the side of the
square we created is even, so this
won’t work either.
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