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The Real Calculus vs . 
What You Learned 

HOW 
LEIBNIZ'S 

ORIGINAL 
CALCULUS 

HAS BEEN 
SUBVERTED 

by Ernest Schapi  ro 

A false version of the calculus, 
based on the Cauchy limit 
theorem, is now taught in 

the schools. To revive 
inventiveness in the physical 
sciences, students must learn 

the real creative breakthrough 
embodied in Leibniz's 

discovery of the calculus. 

Fal l  1 999 

©Will Mcintyre/Photo Researchers, Inc. 

A student in calculus class. But what is she learning?-a set of rules whose 
discovery has been mystified by the Limit Theorem of Cauchy, or the actual 
method of invention utilized by Leibniz in discovering the calculus? 
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I
nvention of the calcu l us is one of the greatest d iscoveries. 
It permitted the solution to a wide range of mathematical 
p ro b l ems by means  of a new l y  i nvented l anguage or  

metaphor. It was therefore a great creative breakthrough, and 
it is  therefore entirely predictable that the process by which it 
was invented has never been properly taught to the m i l l ions 
of people who study the calculus. The basic concept of conti
nu ity, which for Gottfried Wi l he lm Leibn iz  ( 1 646-1 7 1 6) was 
consistent with the notion of causa l ity, is taught, but in such a 
way as to stand it on its head . Conti nu i ty, rather than being  
something fundamental ,  gets defined nowadays as  someth ing 
secondary to "sets of points ."  

I became i nterested i n  the orig in  of  the calcu lus  after hear
ing a lectu re on the subj ect i n  Buffa lo  i n  1 978 .  I ordered a 
book mentioned by the speaker, Carol Wh ite, entit led The 
History of the Calculus and Its Conceptual Development, by 
Carl Boyer.1 This  book, in turn, cited The Early Mathematical 
Manuscripts of Leibniz.2 When I came to New York City i n  
1 980, I was able to get a copy o f  the Leibniz work through a 
company that searches for out-of-print books. After grappl ing 
with the book for a few weeks, I cou l d  get the main  idea of 
what Leibniz was doing with series. I have been' trying s ince 
then to figure out why Leibniz, and not other great mathemati
cians, such as Pascal, Fermat, and Huygens, made the break
through.  I th i n k  the answer to the question req u i res under
standing h is  ph i losophical method. 

Leibniz, from h is  teens, was interested in metaphysics and 
scientific method. H is  d issertation at age 20, entitled "Disser
tation on the Art of Comb inations, ,,3 concerned the mathe
matical analysis of complex statements into s impler ones. I n  
the course o f  h i s  work, h e  was forced to present h i s  own defi
n itions of common ly used words. In fact, the i nvention of the 
calculus was part of a program to enrich the language of Ger
many. H i s  ca lcu l u s  i tse lf  was based u pon new poetic 
metaphors, appl ied to prev ious ly  u nsolvable problems. He 
thus enabled everyone to conceptua l ize someth ing  wh ich  
previously had been extremely d ifficu lt. 

The Principle of Discovery 
Leibn iz  proposed a project to represent a l l  conceptions of 

mathematics, law, physical science, and morals by a sort of 
universal language, which wou ld conta in  with in  itself the very 
princip le of d i scovery. He described th is as prov id ing an in
crease i n  the powers of  reason, comparable to the improve
ment of v is ion by the i nvention of the tel escope. He cal led 
th is the un iversal characteristic.  U nfortunately, he cou ld not 
enl ist the col laboration of any scientists of h is  time. 

However, to break the ground for this project, he developed 
rigorous defin itions, defin itions which contai ned with in  them
selves, wherever poss i ble,  the e lement of causal ity. He i n 
sisted on the principle that the predicate i s  necessari ly impl ied 
i n  the subject. Th is  were true, whether  the truths i nvo lved 
were contingent truths, or  necessary, a priori truths .  A first 
truth is one which predicates someth ing of itself, or den ies the 
opposite of its opposite. For example, A is A, or A is not non
A. These truths are ca l l ed identities. A l l  other truths are re
ducible to fi rst truths by the aid of defin itions or of concepts. 

Leibn iz gave as an example the, unti l then, axiomatic state
ment: "The whole is greater than the part . "  H ere is how he 
proceeded: 

"The whole is greater than its part," cou ld be proved by 
a syllogism, of which the major term was a defi n ition, and 
the minor term an identity. For, if one of two things is 
equal to a part of another, the former is cal led the less, 
and the latter the greater; and this is to be taken as the 
definition. Now, if to th is defin ition there be added the 
fol lowing identical and u ndemonstrable axiom, 
"Everyth ing possessed of magnitude is equal to itself," i .e. 
A = A, then we have the syl logism: 

Whatever is equal to a part of another, is less than that 
other: (by the defin ition) 

but the part is  equal to a part of the whole: 
( i .e. to itself by identity). 

Hence the part is  less than the whole. 

As Le ibn iz  remarked later, th i s  proof was i m portant, be
cause without it, someone wou ld be able to assert an excep
tion to the axiomatic statement. Furthermore, from these con
s iderat

'
ions  came the pr i n c i p l e  th at the predicate or  

consequent i nheres i n  the antecedent. He restated it as  a prin
ciple of causality: Noth ing happens without a reason. Leibniz 
wrote: 

In contingent truths however, though the predicate 
inheres in the subject, we can never demonstrate this, nor 
can the proposition ever be reduced to an equation or an 
identity, but the analysis proceeds to infin ity, only God 
being able to see, not the end of the analysis i ndeed, 
s ince there is no end, but the nexus of terms or the 
inc lusion of the pred icate in  the subject, s ince He sees 
everyth ing which is in the series. Indeed this truth arises 
in part from H is intel lect and in part from H is wi l l ,  and so 
expresses H is i nfin ite perfection, and the harmony of the 
enti re series of th ings, each in its own particu lar way.s 

As an example of such an i nfi n ite series he gave the ratio of 
the side of the square to the d i agonal .  

Thus Leibn iz's work i n  mathematics was one aspect of  h i s  
phi losophical program and grand design. He  hoped that theo
logical questions cou ld be approached as rigorously as math
ematics .  I n  1 6 79,  wr i t i ng  to J o h n  Freder i ck, D u ke of 
Brunswick-Hanover, he said :  

But  disputes are more customary than demonstrations 
in  phi losophy, morals, and theology, and most readers 
wi l l  have the prejudices about such a project that are 
usual about works deal ing with these matters; for it wi l l  
be thought that the author has  merely transcribed and 
problematized, and is probably a superficial m ind l ittle 
versed in the mathematical sciences and, consequently, 
hardly capable of true demonstration . I n  view of these 
considerations, I have tried to d isabuse everyone by push
ing myself ahead a l ittle further than is common in 
mathematics, where I bel ieve I have made d iscoveries 
which have already received the general approval of the 
greatest men of the day, and which wi l l  appear with 
bri l l iance whenever I choose. This was the true reason for 
my long stay i n  France-to perfect myself i n  this field, and 
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The young Gottfried Wilhelm Leibniz (right), and Christiaan Huygens (7 629- 1 695). Leibniz's 
association with the Dutch-born mathematical-physicist in Paris in 1 672, set him on the path of 
discovery of the calculus. 

to establish my reputation, for when I went there I was not 
much of a geometrician, which I needed to be in order to 
set up my demonstrations in a rigorous way. So I want fi rst 
to publish my discoveries in  analysis, geometry, and 
mechanics, and I venture to say that these wi l l  not be 
inferior to those which Ga l i leo and Descartes have given 
us. Men wi l l  be able to judge from them whether I know 
how to d iscover and to demonstrate. I d id  not study math
ematical sciences for themselves, therefore, but in order 
some day to use them in establ ishing my credit and 
furthering piety.6 

Series and Differences 
In the course of h i s  work with identities, he noted the fol

lowing case, whose impl ications had gone unrecogn ized. 
Consider the series of increasing numbers 

A, B, C, 0, £, and examine the differences 

A + (B-A) + (C- B) + (o-C) + (£- 0) = £ 
L M N 0 

£-A = L + M + N + 0 

This was identica l ly  true of any series of stead i ly increasing 
or decreasing numbers. He began to look at some simple se
ries of numbers such as the series of the squares. 

o 1 4 9 1 6  25 
1 3 5 7 9 

where the second row represents the differences between suc
cessive squares. He noticed that the differences of these differ
ences were a l l  2 .  
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He devised a tab le of n umbers to represent the formations 
of sums and differences by a kind of shorthand. 

1 1 1 1 1 1 1 
2 3 4 5 6 7 
3 6 1 0  1 5  2 1  28 
4 10 20 35 56 84 
5 1 5  35 . 70 1 26 2 1 0  
6 2 1  5 6  1 26 252 462 
7 28 84 2 1 0  462 924 

Looking at this horizonta l ly, any term is the sum of the se
ries to the left just above it. That i s, 1 0  = 1 + 2 + 3 + 4. Any 
term is the d ifference of two just below it and to the left. Fur
thermore, looking at the d iagonals ,?  the terms prov ide the 
coefficients for the elevation for x + 1 to  any power. 

For example: (x+ 1 )2 = x2 + 2x + 1 
(x+ 1 )3 = x3+ 3x2 + 3x + 1 

This has a geometrical interpretation. Thus, to take a square 
two un its on a side and convert it into one with three units on 
a s ide, we add on  a 1 x 1 square and two 2 x 1 rectangles to 
the original square (Figure 1 ) . 

The expression for (x + 1 )3 has a geometrical interpretation 
for cubes.8 Leibn iz's table was a way of representing series of 
numbers, because each row was constructed by taking the sum 
of the numbers in the row above, and this principle cou ld be 
extended as far as one wished. Sums of sums were second sums 
and differences of d ifferences were second differences. We wi l l  
see that the notion of  a derivative and a second derivative go 
back to the simple ideas of d ifferences and second differences. 

Le ibn iz  looked u po n  series of n u m bers as ana logous to 
conti ngent causal sequences, traceable to an origi nal  cause. 
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Figure 1 

For example, he begins h is  essay -"Art of Combinations," with 
a proof for the existence of God, based upon a l l  motion in the 
universe, of necessity, hav ing a first cause. The cause of the 
sequence may not be apparent on fi rst inspection. However, 
the generative principle must exist, for noth ing happens with
out a cause.  A series of n u m bers represents a pr i nc ip le  of 
causal ity. We have a l ready seen how some series have a sim
ple geometric interpretation, such as the series of squares or of 
cubes. 

The series cal led the geometric series can be considered to 
represent sel f-s im i lar growth, as i n  the formation of a self-sim
i lar spira l  traversing the su rface of a cone from the base to the 
apex, and a lways mainta in ing the same angle to the horizon
tal (F igure 2). Consider the series 

1 ,  1 /3, 1 /9, 1 /27, 1 /8 1 , . . .  

Thus, at the start, the entire height of the cone is yet to be 
traversed; hence we have 1 .  After the fi rst turn of a spiral, one
th i rd of the d istance rema i ns.  After the second turn is com
pleted, only one-n inth remains.  Leibniz noticed something in
terest ing about t h i s  ser ies,  u s i n g  h i s  n ew approac h .  The 
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Figure 3 
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difference series of a geometric series is, itself, a geometric se
ries. Th is fol lows from the self-s im i lar geometry. Leibniz d ia
grammed the calcu lation by representing each of the terms as 
a length; a l l  of these lengths took the same start ing point (F ig
ure 3) .  

Because the fi rst term of the series is 1 ,  and the last term is  
0, the sum of a l l  the successive d ifferences between the terms 
of the series must a l so equal  1 .  The success ive d i fferences, 
however, also are a geometric series with the same ratio as the 
original series! 

Leibn iz  told  h i s  col league Chri st iaan Huygens, in Paris i n  
1 672, that he had ach ieved these i nteresting resu l ts with this 
new princip le .  H uygens put his young friend to the test, ask
ing h im to find the sum of the fol lowing cont inu ing series: 

1 + 1 /2 + 1 /6 + 1 /1 2  + 1 /20 + 1/30 . . . .  

Leibniz recogn ized this series as being the d ifference series 
of another series (series A, below);  and,  th i s  a l lowed for its 
sum to be read i ly  determi ned. Here is how he worked it: 

. 1 1 1 1 1 1 series A = 1 ,  -
2 

-
3 -4 -5 -

6 
-
7 I I I I I • • •  

series B = l ..l ..l ..l ..l ..l 2 ,  6, 1 2, 20, 3 0 ,  4 2 ,  . . . 

Leibniz was aware that series A was not convergent, that is, 
its sum was i nfin ity, not a particular number. Therefore, he cut 
series A off after n terms .  Th is means that there are n - 1 
terms i n  the B series of d ifferences. Leibniz d iscovered that the 
sum of these n - 1 differences is equal to 1 - ( l /n) . (The rea
son for this is found i n  the rule Leibniz d iscovered i n  h i s  study 
of identities, mentioned earl ier, that the sum of the differences 
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is equal to the difference between the first and l ast terms of 
the original series.) So, for example, consider the sum of series 
B, up through the third term, 1/1 2 .  This is  the n - 1 term, so n 
wou ld equal 4. Then the sum of series B up through th is term 
shou l d  be 1 - 1 /4 = 3/4. Adding the three terms shows that it 
is, and the same holds for any term. Now, if we take the ex
pression 1 - ( l /n), descr ib ing the sum of series B, and con
s ider it as n gets la rger and la rger, we see that l /n gets very 
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6 
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-=, 
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sma l l .  Thus the expression for the sum of series B approaches 
1 .  This was the answer to Huygens's test. 

Leibniz saw that series of fractions, just l i ke the series of in
tegers, cou ld a lso be derived, ad infinitum, from one another. 
He constructed another table, wh ich he cal led the harmonic 
t r iang le  ( F i g u re 4). T h i s  was based upon  the same ru l e, 
namely, that successive rows were composed of the difference 
terms of the previous row. (Thus, 1/2 is the difference between 
1 and 1 /2 ;  1 /6 is the d ifference between 1 /2 and 1/3 ;  1 /1 2  is 
the difference between 1/3 and 1/4, and so forth.) 

Leibniz began to th ink  about how this approach, which was 
val i d  for i ntegers and fractions, m ight also be val id  for series 
of i nfin ites ima l ly  smal l numbers. We w i l l  soon see how that 
was appl ied. 

Huygens was del ighted by Leibn iz's d iscovery. The partic
u lar series he had asked Leibn iz  to so lve had a l ready been 
worked out by H udde. But the approach Leibn iz  took was 
or ig i n a l .  H u ygens asked Le i b n iz to study geometry, espe
c i a l ly the determi nation of the areas of su rfaces of revo l u 
tion . Leibniz read the writ ings o f  B la ise Pasca l .  I n  particu lar  
he was  fasc i n ated by Pasca l 's sol ut ion to  the  su rface of a 
sphere, conceiving of the sphere as produced by the rotation 
of a circle about an  axis. F igure 5 i s  the d iagram which Pas
cal constructed to represent the sol ution to the surface gen
erated by rotating a quad rant of a c i rc le  about an axis .  Pas
ca l  was a b l e  to transform the s u rface of the h e m i sphere 
generated by th is  rotation into a rectangle.  Th is section rep
resents a stage in Leibn iz's efforts to develop the calcu lus ;  it 
does not embody the  bas ic  concept ion w h i c h  he l ater  
ach ieved. If it is  too d ifficu lt for the reader, don't worry too 
much, just go on to the next section .  

In  th is figure, 01 is a radius. The vertical strip with base RR' 
is actual ly of infinitesimal width. I is some point located verti
cal ly above the width RR'. EB is equal to RR'. EE' i s  the tan
gent to the c i rc le at the point I. By the tangent, we mean a l i ne 
touch ing the c i rc le  at one and on ly  one point. Then we can 
show that the l ittle i nfin ites imal  triangle, EE' B, and the triangle 
010 are s imi lar. (The l i ne 10 divides right triangle Ala into tri
angles lAD and OlD, which are s imi lar to each other, as wel l  
a s  to triangle Ala. That is, they have the same three angles, 
and therefore thei r  sides are proportional ,  or, .in Leibn iz's de
scription, they are i nd istingu ishable apart from the i r  size. EE' B 
and lAD are s imi lar  because their  s ides are para l le l .  Because 
lAD and 010 are s imi lar, so are EE'B and 010.) 

Based on th is s imi larity of EE 'B and 100, Pascal concluded 
that EE' x 01 = RR' x 01 (the rad i us), and that this rel ation
ship must hold for each vertical i nfin itesimal  strip! To find the 
su rface for the entire hemisphere, we need the surface gener
ated by rotating the quadrant about the OR'R axis. Each verti
cal strip or sinus, such as RR'FF', when rotated about the base, 
w i l l  generate a c i rc u l a r  band u po n  the hemisphere of a rc 
length FF', that is, an arc length very close to the length of the 
tangent EE'. Pascal then said, that if we were to take the entire 
quadrant as divided up i nto these i nfin itesima l ly th i n  vertical 
strips, then 

L. EE' x 01 = OP, 

where L. denotes a process of summation . We get 0/2 on the 
right s ide, because 01 i s  being m u lt ip l ied in success ion by 



each of the l i nes RR', from 0 out to T, and their  sum is also 
01. 

But what is the product EE' x Ol? It is the area of a cyl inder 
of approxi mate rad ius  01 and height EE', p rovided we also 
multiply by 2n. We say approximate radius, because 01 l ies 
between the two d iameters of the l ittle cyl i nder, RE' and R'E'. 
The total su rface of the hemisphere is obtai ned by summing 
up a l l  of these l i tt le cyl i nders. S ince the two rad i i  are not ex
actly equal ,  that is, RE and R'E', these a re not perfect cyl in
ders. This was j ustified, because as  the vertical strip gets thin
ner and thinner, the tangent l i ne  EE' comes closer and closer 
to being equal to the arc of the c i rc le  FF'. Therefore, the area 
of the infin itesimal  cyl i nder becomes equal to the area of the 
i nfin itesimal circular band on the surface of the sphere gener
ated by rotating the quadrant around the axis AD. It gives the 
result: 2n times the rad ius squared. Notice that what we were 
also doing was to construct a rectangle of base equal to the 
sum of a l l  the RR's and of constant he ight 01. Because we 
were summing the RR's all the way out to the end, the rectan
gle i s ,  i n  th is  case, a square.  Th is  is  i l l u strated by the stri ps 
placed vertica l l y  below the l i ne OA. Thus, we have, i n  fact, 
been convert ing the surface of the sphere i nto a p lane area, in  
th is case a square. 

Now Leibn iz  was suddenly struck by the observation that 
this method, which Pascal had l i m ited to the sphere, cou l d  
actual ly be used for any surface o f  revolution. I n  this case, the 
plane area wou ld  be constructed as before by taking the nor
mal (perpendicular) to the curve at a given point on the curve. 
Whereas, in the case of the sphere, the normal was always the 
radius of the c i rcle, in the case of some other su rface of revo
l ut ion,  say a parabo lo id ,  the norma l  wou l d  be of vary i ng  
length. However, one  cou l d  sti l l  derive the  characteristic tri
angle for the curve at each point and erect below that point, 
as before, a perpendicular, not to the curve but to the axis of 
rotation below the curve, and of length equa l  to the original  
normal to the curve. One then had the d ifficu lt task of sum
ming al l  the rectangu lar strips. 

Generating a Curve 
Leibniz spent some time working out solutions based upon 

this new approach, which, it turns out, was a lso being uti l ized 
by Barrow, Newton's teacher. Although th is method used the 
tangent to the curve, it was not u nt i l  1 676 that Leibniz began 
to use the method of d i fferences to derive tangents. In that 
year he made a cruc ia l  breakthrough, when he rea l ized that 
the determi n at ion of the tangent to the curve cou ld  be ob
tained very easi ly by use of the principles he had a l ready been 
applying with series of integers and series of fractions. He also 
real ized that, because determin ing the tangent to a curve was 
equ ivalent, as we sha l l  see, to fi nd i ng the successive d iffer
ences of the curve, then, because find ing a reas of surfaces in
volved a process of summation of a series, it amounted to an 
inverse tangent problem.  That i s  to say: G iven a function or 
curve, determine that second function for which the first func
tion or curve was the tangent. If this sounds very compl icated, 
just take another look at the arithmetic and harmonic tr ian
gles. Recogn ize again, that summation, and the taking of suc
cessive differences, are the inverse of one another. The princi
ple is, in fact, ch i l d ish l y  s i m p l e-but on ly  a g reat creat ive 
gen ius  was ab le  to see its a p p l i cation ,  as we a re about to 

demonstrate. 
Le ibn iz  saw that the character ist ic tr iangle, BEE' used i n  

Pascal's calcu lation of the sphere, reflected not just the prop
erty of the curve at that point, but, of necessity, the process of 
generation of the ent i re cu rve, of wh ich  the point was on ly  
one  moment. Therefore, he  looked at  the  process govern i ng 
the generation of the c u rve from the same standpo int from 
which he had looked at the formation of a l l  other series. 

Consider the parabola with equation Y = kx2 (Figure 6). This 
equation for the parabo l a, and the equations of other con ic 
sections, were a l ready known at th i s  t ime, and Le ibn iz was 
read ing about them i n  the works of Descartes. The l i ne from 
xo' pass i ng through (Xl Yl )' and reach ing  the vertical l i ne on 
the right is the tangent to the parabola .  The l i ne from (X1 Yl ) to 
(x2Y2) is a chord of the parabola.  

The tangent i n  this parabola can be represented by its slope. 
For instance, the slope of the first l ine can be represented by 

This l i ne is the tangent at (xl , y, ) . 
The slope of the l ine jo in ing the points (xl ' Yl ) and (x2'Y2) i s  

Y2 - Yl 

We thus can th ink of the tangent as being the first of the se
r ies of such l i nes connect i n g  po i n t  (Xl 'Yl ) with a ser ies of 

Yl 
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Figure 6 

This line is tangent to 
the parabola at (Xl ,  Yl ) 

THE PARABOLA Y = kx2 
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Two leading opponents of the school of Descartes, the mathematician-philosophers Pierre de Fermat (left, 1 60 1 - 1 665) and 
Blaise Pascal (1 623- 1 662), laid the foundation, through their work in number series and geometry, for Leibniz's discovery. 

poi nts fu rther up  a long the parabo la .  Because it i s  the fi rst 
such l i ne, it connects the point (Xl ' Yl )  with itself. Leibn iz saw 
that the successive values of the slopes of these l i nes formed a 
series, and that, if he cou ld determine their rule of formation, 
then he cou ld deduce the va lue  of the series at the start ing 
point. He looked at the successive differences of these values 
of the slope by the fol lowing simple calculation . By the known 
equation of the parabola, 

Yl = kx/ 

Then, if x
2 

- xl = dx, 

Y2 = k(xl + dx)2 

(also by the known equation of the parabola). 

Then, if dy = k (xl + dx)2 - kx/, 

dy = Y2 
- Yl = k (x/ + 2xl dx + dx2) - kXl 2  

Note that dy and dx denote hypothetical changes i n  y and 
x; we are conducting a thought experiment for which Leibniz 
was prepared to provide ful l  justification. 

Then what was the va lue  of the s lope of the curve at the 
point xl Yl ?  Taking the ratio, we get � = k(2xl + dx) 

Here Leibniz introduced his principle of continu ity. He con
ducted a thought experiment. His  principle stated : 

In any supposed transition ending in any terminus, it is 
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perm iss ible to institute a general reasoning in  which the 
final terminus may also be inciuded. lO  

The use of  these new kinds of  numbers, he compared with 
the successful use of the i maginary numbers: 

It w i l l  be sufficient if, when we speak of infin itely great 
(or, more strictly, un l im ited), or of i nfin itely sma l l  
quantities (i .e. the very least o f  those with in  our 
knowledge), it is understood that we mean quantities that 
are indefinitely great or i ndefinitely sma l l ;  i .e., as great as 
you please, or as small as you please, so that the error that 
anyone may assign may be less than a certai n  assigned 
quantity. Also, si nce in  general it wi l l  appear that, when 
any sma l l  error is assigned, it can be shown that it should 
be less, it fol lows that the error is absolutely nothing; an 
almost exactly similar kind of argument is used in 
different places by Eucl id, Theodosius, and others; and 
this seemed to them to be a wonderful thing, although it  
cou ld not be denied that it was perfectly true that, from 
the very thi ng that was assumed an error, it cou ld be 
inferred that the error was nonexistent. Thus, by infi n itely 
great and i nfin itely smal l ,  we understand something 
i ndefin itely great, or someth ing indefinitely smal l ,  so that 
each conducts itself as a sort of class, and not merely as 
the last th ing of a class. If any one wishes to understand 
these as the u ltimate things, or as tru ly i nfi n ite, it can be 
done, and that too without fal l i ng back upon a 
controversy about the reality of extensions, or of infin ite 
continuums in general, or of the i nfi n itely smal l ,  ay, even 



though he th ink that such things are utterly impossible; it 
wi l l  be sufficient s imply to make use of them as a tool 
that has advantages for the purpose of the calculation, 
just as the algebraists reta in  imaginary roots with great 
profit. For they contai n  a handy means of reckon i ng, as 
can manifestly be verified in every case in a rigorous 
manner by the method a l ready stated . l l  

I n  other words, we can i nc lude the  case of  dx = O .  As we 
w i l l  see, th i s  approach of Lei b n i z  evoked howls of protest: 
"How can you d ivide by zero?" Here is another formu l ation 
Leibniz gave of this princip le :  

I f  in a given series one value approaches another value 
continuously, and at length disappears into it, the results 
dependent on these values in the unknown series must 
also necessarily approach each other cont inuously, and, 
at length, end in each other. So in  geometry, for example, 
the case of an e l l ipse continuously approaches that of a 
parabola, as one focus remains fixed and the other is 
moved farther and farther away, unt i l  the el l i pse goes over 
into a parabola when the focus is removed i nfin itely. 
Therefore, a l l  the rules for the e l l i pse must of necessity be 
verified i n  the parabola (understood as an e l l ipse whose 
second focus is at an i nfin ite d istance.) Hence, rays 
striking a parabola in para l lel l ines can be conceived as 
coming from the other focus, or tending towards it.1 2 

(Remember that when a l ight source is p laced at one focus 
of an  e l l  i pse, the I ight i s  reflected back to the other focus .  
When a l ight source is placed at  the  focus of  a parabol ic mi r
ror, it is reflected out i n  para l le l  rays; when para l lel rays strike 
a parabol i c  m i rror, they are reflected back through the focus 
of the parabola. )  

Leibn iz's solut ion is based upon the method of hypothesis, 
of a thought experiment in which a un iversal  princip le is in 
voked . As we sha l l  see ,  i t  i s  t h i s  method of hypothes is  to  
which h i s  adversaries objected. Through the method of  hy
pothesis, he had brought i nto existence a new k ind of num
ber, denoted by a metaphor, dy/dx, which  has permanently 
enriched our language. Even his most bitter adversaries have 
been forced to adopt the metaphor i n  d o i n g  the i r  ca lcu la 
tions, a lthough they have tried to  mystify the  way i t  was in 
vented . 

Once the rules of obta in ing the tangent for a particular type 
of function or curve are worked out, the rest is ch i ld 's play. 
For example, the derivative or tangent to the exponentia l  x n is 
nx1n- 1). Leibn iz  a lso deduced the derivatives for first deriva
tives, namely, the second derivatives. In th is, he was entirely 
unique; tangents for certai n  curves had a l ready been d i scov
ered, but no one had worked out, or even conceived of, sec
ond derivatives. The science of wave mot ion,  and much of 
mathematical physics, requ i res the second derivative. 

The Principle of Continuity 
Textbooks of ca l c u l us descr ibe th i s  tangent-determ i n ing  

process as  equ ivalent to  f inding the derivative, or  dy/dx, at  the 
point. However, rather than uti l iz ing the principle of continu
ity, they make contin u ity itself a secondary idea, one that is 
deduced from sets of points .  The tangent i s  referred to as a 

l imit obtained as one approaches, but never quite reaches, the 
point. This is  i n  contradiction to Leibn iz, who stated c learly 
that the end-point or terminus of the process must be inc luded 
in the process. The Leibnizian approach enables us to see the 
growth process in  the curve. By the princip le of cont inu ity, we 
can and must relate changes in the d iscrete to changes in the 
continuous man ifold where causal ity is located. For example, 
the d ifference series for cubes shows us how cubes grow by 
add ing on squares, l i nes, and points. The calcu lus, for the first 
ti me, helps us to hypothesize what m ust be going on i n  the 
cont inuous  man ifo ld  between the moments when the new 
s ingu larities pop out, that is, when the new layers are added 
onto the faces of the cube. 

A l l  growth processes generate a series of numbers . These 
series, in  turn, are a means of describing the origina l  process. 
As we remarked earl ier, Le ibn iz saw that the inverse tangent 
calcu lat ion cou ld  be used to d eterm i n e  surfaces and areas. 
This amounted to s imply determi n ing what the series of num
bers must be for which the first series constituted the first dif
ferences. This  very easy approach gave Lei bn iz so lut ions to 
very d i fficu lt, or h itherto u nsol ved, problems.  For example, 
Archimedes worked out a very tedious solution to the area un
der a parabola ;  h is method i s  ca l led the method of exhaus
tion, and wel l  it m ight be, because it is so ted ious! As we shal l  
see, Leibn iz's method makes use o f  h i s  new language to solve 
the problem a lmost i nstantly. 

Cons ider  the ser ies of str ips of i nf i n ites i m a l  w idth ,  dx 
(Figure 7). Then the area of the rectangular strip of height kx2 
and the width dx is kx2dx. Now, si nce these strips form an in
creasing series, it must be that there exists a second series for 
which they are in turn the differences. How did Leibniz figure 
out what that series is?  Very s imple :  just take the inverse of the 
difference-form i ng process. The series of cubes has its d iffer
ences in  the form 

When dx is made infi n ites imal ly  smal l ,  then, because dx2 i s  
incomparably bigger than dx3, and incomparably smal ler than 
dx, this reduces to 3x2dx. 

Therefore, for the parabola, y = kx2, the function 

t kx3 
gives the series kx2dx as its d i fference series. By making the 
rectangles i nfin ites ima l ly  narrow, their sum gives an i ncreas
i ngly c lose approxi m ation to the area u nder the curve. Re
member Leibniz's or igina l  d iscovery, that the sum of any se
ries of d ifferences equals the d ifference between the fi rst and 
last terms of the second series, which gives rise to those d iffer
ence. Therefore, the sum of the d ifferences kx2dx is equal to 
the value of t kx3 at the right-hand endpoint, m inus its value 
at the left-hand endpo i nt.  Today th i s  i s  ca l led the definite 
integral. 

The Limits of Courant 
H a v i n g  been through  t h i s  d e m o n strat i o n  of L e i b n iz 's 

method, you may be t h i n king  that sure ly  it exc ites admira
tion among today's mathematic ians, and is taught and used 
as a mode l  for students .  Wro n g !  A l l  you n eed to do is to 
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Y =  kx2 

�----------�dx��-L----- x 

Figure 7 
THE AREA U N DER A PARABOLA 

examine the vicious s landers and d istortions in the fol lowing 
commentaries on Leibn iz, wh ich, l i ke i ron fi l i ngs i n  a mag
netic f ield, point a long the contro l l i ng l i nes of force. Let us 
look at the famous  textbook Wha t  Is Mathema tics ? by 
Richard Cou rant, who was d i rector of the prest igious I nsti
tute for Mathematical Sciences at New York U n iversity. He 
writes of Leibn iz :  

His  achievement is in  no way d imin ished by the fact 
that it was l inked with hazy and untenable ideas which 
are apt to perpetuate a lack of precise understanding in 
minds that prefer mysticism to clarity. 

And further: 

In the mathematical analysis of the seventeenth and 
most of the eighteenth centuries, the Greek ideal of clear 
and rigorous reasoning seemed to have been discarded. 
" Intuition" and " instinct" replaced reason in many 
important instances. 1 3 

Leibniz is misrepresented, and h i s  concept of conti nu ity is 
omitted, in a later section of Courant's book entitled, "Leibn iz' 
Notat ion and the ' I nfi n itely Sma l l ."' Courant there reduces 
Leibn iz's powerfu l metaphor, dy/dx, to a "symbo l ic notation," 
so as to leave out the underlying idea. Courant even impl ies 
that Leibniz real ly meant the same thing as he: 
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Leibn iz's attempt to "expla in" the derivative started in a 
perfectly correct way with the difference quotient of a 
function y = f(x), 

�y f(x I) - f(x) 
�x xI - X 

For the l im it, the derivative, which we cal led (' (xj 
(fol lowing the usage introduced later by Lagrange), 
Leibniz wrote dy/dx, replacing the difference symbol � by 
the "differentia l  symbol"  d. . . .  

After insist ing that we can avoid the problem of div id ing by 
dx = 0, if and  o n l y  if we resort to the " l i m it i ng  process, " 
Courant attacks Leibn iz :  

Mystery and confusion on ly enter if we fol low Leibniz 
and many of his successors by saying something l ike this :  

"�x does not approach zero. I nstead, the ' last val ue' of 
�x i s  not zero, but an ' infin itely sma l l  quantity,' a 
'differentia l '  cal l ed dx; and s imi larly, �y has a ' last' 
infin itely sma l l  value dy . . . . " Such i nfin itely small  
quantities were considered a new kind of number, not 
zero but smal ler than any positive number of the real 
number system. Only those with a real mathematical 
sense cou ld grasp this concept, and the calcu lus was 
thought to be genu inely d ifficu lt, because not everybody 
has, or can develop, this sense. 1 4 

Courant's cr it ic ism is basical ly that which Leibn iz's work 
encountered from the t ime that it first appeared. However, the 
replacement of the principle of continuity by the idea of limits 
was codified i n  the 1 9th century by Augustin Cauchy, and this 
i s  the v iew espoused by Cou rant .  Cauchy was dep loyed 
against Leibniz and his enti re trad ition of Continental Science. 
Cauchy's approach is the one taught in today's mathematics 
classes a l l  over the world .  It is responsib le for m ystifying the 
calcu l us and making it so d ifficu lt to learn, especia l ly the d i f
ferential calcu lus.  

Carl  Boyer, author of The History of the Calculus and Its 
Conceptual Development, was a student of Courant .  H e  is 
outraged at the idea that Leibn iz's description represents phys
ical real ity. He den ies that instantaneous velocity at a poi nt, 
represented by the tangent at the point, actua l ly  exists. Rather, 
he says, the instantaneous velocity is the l im it which the aver
age velocity, referred to above by Courant, approaches as the 
i ntervals get sma l l  enough :  

Inasmuch a s  the laws o f  science are formulated by 
induction on the basis of the evidence of the senses, on 
the face of it there can be no such thi ng in  science as an 
insta�taneous velocity, that is ,  one in  which the d istance 
and time intervals are zero. The senses are unable to 
perceive, and science is consequently unable to measure, 
any but actual changes in position and time. The power 
of every sense organ is l imited by a min imum of possible 
perception. We cannot, therefore, speak of motion or 
velocity, in the sense of a scientific observation, when 
either the distance or the correspond ing time i nterval 
becomes so smal l that the min imum of sensation involved 



i n  its measurement is not excited-much less when the 
interval is assumed to be zero . . . .  

This d ifficulty has been resolved by the i ntroduction of 
the derivative, a concept based on the idea of the l im it. 
In considering the successive values of the .d ifference 

quotient �; [distance over time -ed.l,  mathematics may 

continue to indefinitely make the intervals  as smal l  as it 
pleases. In this way, an i nfin ite sequence of values r

1
, r2, 

r 3' . . .  r n' . . .  (the successive values of the ratio �;) is 

obtained. This sequence may be such that the smaller the 
intervals, the nearer the ratio rn wil l  approach to some 
fixed value L, and such that by taking the value of n to be 
sufficiently large, the d ifference I L - rn ' can be made 
arbitrari ly smal l .  If this be the case, this value L is said to 
be the l imit of the infin ite sequence, or the derivative f'(t) 
of the distance function f(t), or the instantaneous velocity 
of the body. It is to be borne i n  m ind, however, that th is is 
not a velocity i n  the ordinary sense and has no 
counterpart i n  the world of nature, in which there be no 
motion without a change in position. 1 5 

On Leibniz's principle of continu ity, Boyer says: 

. . .  when called upon to expla in  the transition from fin ite 
to infinitesimal magnitudes, he [Leibn iz -ed.J  resorted to 
a quasi-ph i losophical principle known as the law of conti
nuity. We have seen previous appl ications made of th is 
doctrine by Kepler and by N icholas 
of Cusa. The latter may have 
influenced Leibn iz in th is respect, 
as wel l  as in the phi losophical 
doctri ne of monads. 1 6 

Later Boyer says: 

Leibniz justified the l imiting 
cond ition by the law of continu ity, 
whereas mathematics has s ince 
shown that the latter must itself 
first be defined in terms of l imits. 
In this manner of th i nk ing Leibniz 
seems sti l l  to be striving to make 
use of a vague idea of cont inu ity 
which we feel we possess and 
which had bothered th inkers 
since the Greek period . 1 7 

leibniz vs. Cauchy Empiricism 

and axioms of the number system before he even learns about 
the derivative. Bertrand Russe l l ,  the person. phi losophical ly re
sponsible for the New Math, had an i ntense dis l i ke for Leibniz 
because of leibn iz's assertion of un iversals .  Does knowledge 
depend, as Russe l l  said, upon induction from particulars, or, do 
un iversals exist? Cont inu ity is a un iversal . So is substance. The 
empiricist says: "Can you prove there is someth ing real that you 
can cal l  continu ity? Relative to what?" Leibniz successful ly and 
hubristically introduced the idea of cont inu ity into physics and 
mathematics. He described it as 

a principle of general order which I have observed . . . .  
This principle has its orig in  i n  the infin ite, and is 
absolutely necessary in  geometry, but it is  effective i n  
physics as wel l ,  because the sovereign wisdom, the 
source of a l l  th ings, acts as a perfect geometrician, 
observing a harmony to which noth ing can be added . 
This is why the principle serves one as a test or criterion 
by which to reveal the error of an i l l -conceived opinion 
at once, and from the outside, even before a penetrating 
i nternal examination is begun.  When the difference 
between two instances in a given series, or that which is 
presupposed, can be d im in ished unti l it becomes smal ler 
than any given quantity whatever, the correspond i ng 
difference i n  what is sought, or in their results, must of 
necessity also be reduced, or become less than any given 
quantity whatever. Or, to put it more common ly, when 
two instances or data approach each other continuously, 
so that one at least passes over i nto the other, it is  
necessary for the i r  consequences or results (or the 

The above descr ipt ion of the 
Cauchy method by Boyer i ntroduces 
the empiricist outlook, an outlook that 
c u l m i nated i n  the m i nd-destroy i n g  
New Math of the 1 970s. A l l  hypothe
sis-formation is e l i m i nated . The stu
dent is forced to go through pages and 
pages of defi n it ions of sets of points 

Niels Bohr Archive, courtesy AlP Emilio Segr;, Visual Archives 

Boring and Boring-er: Twentieth century physicist Niels Henrik Bohr (I.) and mathe
matician Richard Courant. Courant's desecration of Leibniz's discovery, quoted within, 
and Bohr's insistence on irrationality as the foundation of quantum physics have been 
two of the greatest contributions to the destruction of the Western tradition of scientific 
discovery in this century. 
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unknowns) to do so also. This depends on a more 
general principle: that, as the data are ordered, so the 
unknowns are ordered also .  

I n  the case of the tangent, the s lopes, wh ich  a re the un
knowns, must yield the value at  the point in  question, i . e .  the 
tangent at the point, when the data, that is, x and y become 
sufficiently close to the values of x and y at that point. 

Leibniz d i rectly discussed the nature of un iversals, such as 
continu ity, in  1 670, about two years before he began work on 
the calcu lus.  He had been asked to write an introduction to a 
book by Marius N izol ius, written in 1 553,  cal led On the True 
Principles of Philosophy, against Pseudo-Philosophers. N i
zol ius, a nominal ist, den ied that a "un iversal is anyth ing more 
than a l l  particu la rs taken s imu ltaneously and col lectively, i n  
Leibn iz's words But, Leibniz pointed out, " i f  u n iversals were 
nothi ng but col lections of ind ividuals, it wou ld 

'
fol low that we 

cou ld atta i n  no knowledge by demonstration-a conc lusion 
which N izol ius  actua l ly  draws-but on ly through col lecting 
ind ividuals, or by induction." 

The nominal ist says: " I nduction from experience teaches us 
that i f  we put our fi ngers i n  the fi re they w i l l  be bu rnt." But, 
without real iz ing it, Leibniz says, the nominal ist is using 

the fol lowing un iversal propositions, which do not 
depend on induction but on a universal idea or definition 
of terms: 1 .  If the cause is the same or s imi lar in  all cases, 
the effect wi l l  be the same or sim i lar in a l l ;  2. the 
existence of a th ing which is not senses is not assumed; 
and final ly, 3.  whatever is not assumed, is to be 
disregarded in  practice unti l  it is  proved. 

Thus,  cont inu ity is not merely someth ing  we infer on the 
basis of the observed proxim ity of a set of points. It works the 
other way. Because the un iverse obeys the principle of conti
nu ity, and because our m i nd ,  as part of the un iverse, obeys 
this principle, we can make inferences about the way succes
sive points relate to one another, and about the way physical 
processes must work. 

Leibniz made a useful reference to series in  this essay when 
he said: 

Induction i n  itself produces noth i ng, not even any 
moral certainty, without the help of propositions 
depending, not on induction, but on un iversal reason. 
For if these helping propositions too were derived from 
induction, they wou ld need new helping propositions, 
and so on to i nfinity, and moral certai nty wou ld never 
be obtained . By induction alone, we shou ld never 
perfectly know the proposition that the whole is greater 
than its part, for someone wou ld soon appear, and for 
some reason, deny that it is true in cases not yet 
observed . 1 8  

Thus, to  exp la in  the  formation of  series of  numbers, Leib
n iz  sought the process that generated the entire series. Begin
n i ng with the u n iversal pr inc ip le  of identity, he was able to 
show how one ser ies can be der ived from another series.  
Also, with curves, he saw that there is a s ingle process which 
generates the whole curve, but which is revealed at each very 
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sma l l  interval of the curve. That is the true story of the inven
tion of the calcu l us.  

Ernest Schapiro, MD., an organizer for Lyndon LaRouche's 
political movement, was a member of the biological holo
caust task force, set up by L a Rouche in 1 974, and he co
authored two Executive I nte l l igence Review Special Reports 
on the AIDS crisis, produced in the mid- 1 980s. 

Notes -------------------------------------____ _ 

1. Carl B. Boyer, 1959. The History of the Calculus and Its Historical Devel
opment (New York: Dover Publications). 

2. J.M. Child (translator), 1920. The Early Mathematical Manuscripts of Leib
niz (Chicago: Open Court Publishing Co.). 

3. For the "Art of Combinations," see: Leroy Loemker (editor and translator), 
Gottfried Leibniz: Philosophical Papers and Letters (Chicago: Chicago 
University Press, 1976), p. 73ft. 

4. Child, p. 30 
5. Loemker, p. 265 
6. For letter to the Grand Duke, see Loemker, p. 261 
7. By diagonals are meant the slanted rows 1 1,  1 2 1, 1 3 3 1, 1 4 6 4 1. If 

you rotate the figure clockwise 45°, you see Pascal's triangle. 
8. The reader can construct a three-dimensional model of this as a useful 

exercise. 
9. Loemker, p. 73 

10. Child, p. 147 
11. Child, p. 150 
12. Loemker, p. 447 
13. Richard Courant, 1969 What Is Mathematics? (New York: Oxford Univer-

sity Press), pp. 398-99. 
14. Courant, p. 434 
15. Boyer, pp. 6-7 
16. Boyer, p. 217 
17. Boyer, p. 218 
18. Loemker, p. 129 

The cults of pOlitical correctness', the world of make 

believe, are no longer the unchallenged wave of the 

future. The back-to-reality cultural paradigm-shift, is 

the changed political opportunity to which wise 

statesmen will hitch the destiny of their nations. 
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